Incremental Construction of Complex Aggregates: Counting over a Secondary Table

Clément Charnay1, Nicolas Lachiche1, and Agnès Braud1

ICube, Universit\é de Strasbourg, CNRS
300 Bd Sébastien Brant - BP 10413, F-67412 Illkirch Cedex
\{charnay,nicolas.lachiche,agnes.braud\}@unistra.fr

Abstract. In this paper, we discuss the integration of complex aggregates in the construction of logical decision trees. We review the use of complex aggregates in TILDE, which uses an exhaustive search in the complex aggregate space. As opposed to such a combinatorial search, we introduce a hill-climbing approach to build complex aggregates incrementally.

1 Introduction and Context

Relational data mining deals with data represented by several tables. We focus on the typical setting where one table, the primary table, contains the target column, i.e. the attribute whose value is to be predicted, and has a one-to-many relationship with a secondary table. A possible way of handling such relationship is to use complex aggregates, i.e. to aggregate the objects of the secondary table which meet a given condition, using an aggregate function on the objects themselves (count function) or on a numerical attribute of the objects (e.g. max, average functions). For instance, we may want to classify molecules. Molecules have atoms. They can be represented as a molecule table and an atom table, with a foreign key in the atom table indicating the molecule it belongs to. Then, the class of a molecule may depend on the comparison between the average of the charge of the carbon atoms of the molecule and some threshold. This example also shows on what relies a complex aggregate: an aggregate function (here the average), a condition to select the objects to aggregate (here we select only the carbon atoms), the attribute to aggregate on (here the charge of the atoms), an operator and a threshold to make a comparison with the result of the aggregation.

Previous work showed that the expressivity of complex aggregates can be useful to solve problems such as urban blocks classification. \cite{1,2} introduced complex aggregates in propositionalisation. But their use increases the size of the feature space too much, and they cannot be fully handled. This is the reason why we focus on introducing them in the learning step. To our knowledge, only one relational learner, TILDE \cite{3}, has implemented complex aggregates, but its exhaustive approach is not adapted to too complex problems. The main motivation for our work is to elaborate new heuristics to handle complex aggregates in
relational models. This article presents a logical decision tree learner which uses complex aggregates to deal with secondary tables, using a hill-climbing heuristic to build them incrementally. We introduce this heuristic in the context of logical decision trees, but it could be applied to other approaches. In this article, we focus on counting over a secondary table.

The rest of this paper is organized as follows. In Sect. 2, we review the use of complex aggregates in TILDE. In Sect. 3, we describe our heuristic to explore the complex aggregate space. Finally, in Sect. 4, we detail future work.

2 TILDE and Complex Aggregates

TILDE [3] is a first-order decision tree learner. It uses a top-down approach to choose, node by node, from root to leaves, the best refinement to split the training examples according to their class, using gain ratio as a metric to guide the search. TILDE relies on a language bias: the user specifies the literals which can be added in the conjunction at a node. In this relational context, to deal with secondary tables, the initial version of TILDE introduces new variables from these secondary tables using an existential quantifier.

Then, TILDE has been extended [4] to allow the use of complex aggregates, and a heuristic has been developed to explore the search space [5]. This heuristic is based on the idea of a refinement cube, where refinement space for the aggregate condition, aggregate function and threshold are the dimensions of the cube. This cube is explored in a general-to-specific way, using monotone paths along the different dimensions: when a complex aggregate (a point in the refinement cube) is too specific (i.e. it fails for every training example), the search starting from this point in the refinement cube stops.

However, the implementation does not allow more than two conjuncts in the aggregate query "due to memory problems" [6, p. 32], which limits the search space. Numerical attributes are handled by a comparison to a threshold in problems such as geographical ones. It is possible to discretize numerical attributes beforehand and to define predicates to make those comparisons between the values of the attributes and the thresholds given by the discretization. Nevertheless, enumerating all the combinations of thresholds over all the numerical attributes takes space in memory, and hence the approach is not tractable. To summarize, this combinatorial approach which handles complex aggregates in TILDE has limitations. We intend to overcome these limitations by not trying to explore the search space exhaustively, but by finding a heuristic to explore the search space and to build complex aggregates incrementally.

3 Incremental Construction of Complex Aggregates with Hill-Climbing

Our goal is to build a logical decision tree, like TILDE, which uses complex aggregates to deal with secondary tables. To explore the refinement cube of complex aggregates, we choose to use a hill-climbing method. This section details this
method. We use the general notation "function(condition){operator}threshold" to refer to a complex aggregate.

3.1 The Main Loop of the Hill-Climbing Method

At a node of the logical decision tree, we want to put a conjunction of literals. In TILDE, only one element of the language bias can be added at a node, except if lookahead is enabled. Our approach builds a conjunction element by element using a hill-climbing approach. Starting with an empty conjunction, it adds the best element of the language bias according to the metric used, until no strict improvement can be found by adding an element. For now, we use gain ratio as a metric to guide the search, but we will consider other metrics in the future.

A language bias element is added according to the following rules:

– A literal is added in the conjunction only if it yields a strictly positive gain in the metric.
– For one step in the conjunction refinement, only the properties of the primary object and the complex aggregates involving the primary table and a secondary table are tested. Other tables linked to the secondary tables are not taken into account for now.

For instance, the first literal added in the conjunction could be "the partition coefficient of the molecule is 1.16". Then, a second literal, improving strictly the metric score could be "the count of the carbon atoms in the molecule is greater than or equal to 4". Finally, if no refinement in the language bias leads to an improvement, the process will stop here, with the refinement at the node being "the partition coefficient of the molecule is 1.16 and the count of the carbon atoms in the molecule is greater than or equal to 4".

3.2 Refinement of Complex Aggregates

When testing an aggregate, there is a refinement inside the refinement, and a second hill-climbing is performed from a starting aggregate. For now, we limit ourselves to the count function to aggregate secondary tables. The starting conditions are detailed below. We then try to refine it with hill-climbing, but this time, we allow a non-strict climbing: if there is no strictly improving refinement, we allow picking a refinement with the same score as in the previous step, if it has not been visited before. To achieve that, we store all previous refinements chosen in the hill-climbing path. From the current aggregate, there are several ways to modify it:

– Firstly, given the examples, we compute the possible results of the aggregate function, which will serve as possible thresholds. To these values, we add one threshold depending on the operator: strictly lower than the other values if the operator is \(\leq \) (so that the complex aggregate is true for none of the examples) and strictly higher if the operator is \(\geq \). Such thresholds are chosen to be respectively MAX_DOUBLE and its opposite. The current threshold
is then set to the closest possible threshold if it is lower than the minimum or higher than the maximum of the possible thresholds. For instance, if the current refinement to try is "the count of atoms in the molecule is less than or equal to MAX_DOUBLE" and, in the training set, there are between 13 and 42 atoms in a molecule, the threshold will be immediately set to 42.

– Then, we can refine the aggregate by increasing or decreasing the threshold (among the possible thresholds).

– Other possibilities are to remove a literal from the aggregate condition, or to add one.

The Starting Conditions Given this, if we refer to the maximum threshold as max, 2 starting conditions will be count(true) ≤ max and count(true) ≥ MAX_DOUBLE. From the point of view of the examples considered, they are opposite: if one succeeds for an example, the other will fail. The former is the most general (i.e. it succeeds for every example), the latter the most specific. We then observe that refinements for one will have the same effect on information gain for the other (the final branch of the examples will be inverted between both), so on the training set, they are equivalent, and will be refined equivalently. In the end, we get 2 conditions count(condition) ≤ someThreshold and count(condition) ≥ nextThreshold which are still opposites. To conclude on this point, considering both starting conditions is not necessary, since they will be refined following similar paths and will yield the same information gain after the hill-climbing process. Of course, the same reasoning applies for starting conditions count(true) ≤ −MAX_DOUBLE and count(true) ≥ min, this is the reason why we consider only 2 starting conditions, arbitrarily with the operator ≥.

Moving in the Complex Aggregate Space When refining the aggregates, we then encounter some trouble. Indeed, if we add a literal to the aggregate condition, it will yield a specialization and less objects will be selected. The threshold range discussed above will not be the same, and the current threshold, associated to the previous, more general condition, will not be relevant since it may be too high. Hence, the refinement will yield a poor gain ratio and will not be chosen. For instance, in the training set, there are between 13 and 42 atoms in a molecule, but only between 5 and 20 carbon atoms. If the current aggregate states that "the count of atoms is less than or equal to 30", and we try to refine it to "the count of carbon atoms is less than or equal to 30", this last aggregate will be true for every example, yielding zero gain, and hence will not be chosen. Of course, the problem will be similar if we consider the other way, i.e. if we drop a literal from the aggregate condition, yielding a generalization.

This is the reason why we think modifying the aggregate condition without modifying the threshold is in our case a bad idea. Here is how our approach works when modifying the aggregate condition: the current one gives some number of possible thresholds \(n_1\), the next one (after modification) gives a number of thresholds \(n_2\). We sort those 2 sets those thresholds in increasing order, such as
the current threshold is in position c_1 with indices going from 0 to $n_1 - 1$, the
next threshold chosen, in position c_2 between 0 and $n_2 - 1$ will be picked such as
$rac{c_2}{n_2 - 1}$ is closest to $\frac{c_1}{n_1 - 1}$. Mathematically: $c_2 = \text{round}(\frac{c_1(n_2 - 1)}{n_1 - 1})$. Since we add a
threshold to a list which already contains at least one element, there are always
at least 2 possible thresholds and hence the case $n_1 = 1$ is not an issue.

3.3 Dealing with Empty Sets

Finally, another problem is how to handle empty sets. Indeed, an aggregate
condition might select no object, and aggregating over a numeric attribute is
not possible in that case. For instance, how can the mean of the charge of the
oxygen atoms in a molecule be computed when the molecule does not have any
oxygen atom? Only the count function can deal in a natural way with empty
sets, while another solution has to be chosen for numeric aggregate functions.
Some possibilities to deal with that issue have been discussed in [7]:

- Fixing an arbitrary value as the result.
- Using a value depending on the aggregate condition, as close as possible to
 the values for examples for which the aggregate condition does not result in
 an empty set, or as far as possible.
- Failing the aggregate when the aggregate function cannot be applied.
- Discarding the aggregate from being chosen as a refinement if the aggregate
 function cannot be applied for at least one example.

In our opinion, the two first options are not easy to apply for every function.
Indeed, for functions min or max, one can choose values as low or as high as
possible so that the aggregate always succeed or fail if the function cannot be
applied directly, but for the average function, using a fixed value such as zero is
not relevant if the attribute can take both positive and negative values, neither
is choosing positive or negative infinity. Moreover, the fact that the set to ag-
ggregate is empty can be meaningful, and by assigning a result to the aggregate
function we lose that significance. The third option also gives to the empty set
a meaning we do not necessarily want it to have: the failure of the aggregate
should mean the inequality between the result of the aggregation and the thresh-
old is wrong. However, this is not the meaning of the empty set. Actually, it is
implied by the failure of the existential quantifier for the aggregate condition,
\textit{i.e.} $\text{count}(\text{condition}) \geq 1$ fails.

Then we see two ways to address the issue of empty sets: firstly to consider
them as a third branch in our decision trees, since they do not correspond to
a success or a failure of the inequality, they are a third possibility. However,
this option breaks the binary structure of the tree, which is not necessarily a
problem. Nevertheless, we present another option to preserve the binary tree
structure: the principle is, before adding in a conjunction at a node an aggregate
with a function which may not be applicable, to create a node with the current
conjunction and the $\text{count}(\text{condition}) \geq 1$ aggregate. In the left branch, we can
then add the aggregate $\text{function}(\text{condition}) \geq \text{threshold}$ without the empty
set problem, since we know from the parent node that condition will select at least one object. This adapts the three-branch idea to preserve the binary tree structure, using two nodes instead of one.

4 Conclusion and Future Work

The method described in Sect. 3 is implemented and will be evaluated. The next step in this work is to consider other aggregate functions, on numerical attributes of the secondary objects, and to allow the change of the aggregate function in the refining process of the aggregates, by taking advantage of their ordering as in [5]. Then, another step will be to allow recursivity in the aggregates, i.e. create complex aggregates which have complex aggregates in their aggregate condition, to use the whole database. However, this will inevitably raise new issues, since this will add other levels of refinements. A more complex problem will be to handle many-to-many relationships, since the complex aggregates can be formed both ways with such relationships, which can possibly lead to loops in the recursivity discussed above.

Acknowledgements

This work was supported by the REFRAME project granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the French National Research Agency (ANR).

References